Aspect Based Sentiment Analysis

using LSTM and BERT

DSGA 1011 Project Team 12 Xinli Gu, Yuchan Fu, Di He, Lining Zhang1011

1 Motivation & Introduction to ABSA

vegative

2 Related Work

2.1 Traditional Aspect Based Sentiment Analysis

- ABSA fine-grained textual classification task
- Previously, manually-designed lexicon-based features
- Bag-of-words and sentiment lexicons

2.2 Aspect-based Sentiment Analysis with Neural Networks

- Automatic learning of textual representation
- Attention-based LSTM with Aspect Embedding (ATAE-LSTM)
- Transformer and BERT based method
- Finetune the pre-trained BERT architecture weights on a domain-specific corpus

SemEval Dataset

- Only one aspect or multiple aspects with the same sentiment polarity Multi-Aspect Multi-Sentiment (MAMS) Dataset
- More challenging

3.1 Long Short-term Memory(LSTM)

- Able to solve the vanishing gradient problem
- Using h_N , the last hidden state as sentence representation
- No aspect information -> sentence level sentiment classification

3.2 Attention-based LSTM with Aspect Embedding (ATAE-LSTM)

- Aspect embedding
- Attention between aspect and hidden states
- Able to capture the interdependence between words and the input aspect

3.3 BERT-base and BERT-ADA

4 Experiments

Models		SemEval-14		MAMS	
		Accuracy	F1-score	Accuracy	F1-score
GloVe	LSTM	0.7268	0.5301	0.5122	0.3712
	ATAE-LSTM	0.7491	0.6033	0.7028	0.5259
	CapsNet	0.8079	-	0.7978	-
	CapsNet-BERT	0.8593	-	0.8339	-
BERT	BERT	0.8492	0.7693	0.8406	0.8356
	BERT Rest	0.8714	0.8005	0.8473	0.8419

Table 1: Results on SemEval-14 and MAMS Dataset.

- All models perform better on the SemEval-14 Restaurant Review dataset than MAMS dataset.
- Domain-trained BERT-Rest outperforms all other models and achieves the best performance.

Thank you!