

Semi-Supervised Image Classification Course Project

Pseudo Learning Approach

PRESENTED BY Team ABC123 Di He, CongYun Jin, Colin Wan 05/04/2021

Methods Experimented

- Contrastive Learning
 - Performance largely depends on batch size
 - Benefits from long training trajectory
- Cluster Learning
 - Performance largely depends on memory

• Features learned do not perform well in classification

- Do not require too much computation capacity
- Training time required is much less

stop-grad

encoder #

A ma

predictor /

encoder

 $x_1 \neq$

Extra Label Request

Step 1: Trained the original model

based unlabeling data and 5% labeled training data

Step 2: Select 2.5% Labeling Images based on the entropy of the prediction of each unlabeled image

Step 3: Trained the model Extra based unlabeling data and <u>7.5%</u> labeled training data

Uncertainty Sampling Examples with Uniform & Random Labels

Framework of CoMatch

$$\mathcal{L}_x = rac{1}{B}\sum_{b=1}^B \mathrm{H}(y_b, p(y|\mathrm{Aug}_{\mathrm{w}}(x_b)))$$

• Unsupervised classification loss on unlabeled data

$$\mathcal{L}_u^{cls} = rac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max q_b \geq au) \mathrm{H}(q_b, p(y|\mathrm{Aug}_\mathrm{s}(u_b)))$$

$$\mathcal{L} = \mathcal{L}_x + \lambda_{cls} \mathcal{L}_u^{cls} + \lambda_{ctr} \mathcal{L}_u^{ctr}$$

Results

Self-supervised pre- training	Method	Epochs	Top-1 Accuracy 5% Label	Top-1 Accuracy 7.5% Label
None	FixMatch	300	29%	N/A
	CoMatch	400	50.8%	51%
AutoEncoder	AE	200	18%	N/A
Barlow Twins	Pretrain+ Fine-tune	100	24%	26%
SimCLR		300	21%	N/A

Predicted Labels Distribution

Plot 1.1 Confusion Matrix of Train

Plot 1.2 Confusion Matrix of Val

Plot 2: Train vs Val

Visualization of Network

what did our model learn?

Features Learnt

- Shape of wings
- Texture of wings
- Background flowers

• ...

Performance Analysis

what did our model not learn?

Type 1: Under-Classified Challenging characters (too specific):

- Viewpoint variation
- Scale variation
- Intra-class variation

Type 2: Over-Classified

Characters (too general):

- Contain general features: rectangle
- Very flexible, could contain any object

