NYU

Semi-Supervised Image
Classification Course Project

Pseudo Learning Approach

PRESENTED BY Team ABCI123
Di He, CongYun Jin, Colin Wan
05/04/2021



Methods Experimented

ely depends on batch size
training trajectory

ely depends on memory

do not perform well in classification

much computation capacity
uired is much less
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Extra Label Request

Least Confidence Margin of Confidence

Step 2: Select 2.5% Labeling Images . .

based on the entropy of the prediction of each Ratio of Confidence (—

- . .

Uncertainty Sampling Examples with Uniform & Random Labels

Step 1: Trained the original model
based unlabeling data and 5% labeled training data

Step 3: Trained the model Extra
based unlabeling data and 7.5% labeled training data
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Framework of CoMatch

Memory-smoothed pseudo-labeling

Pseudo-label graph
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Results

Self-supervised pre-
training

None
AutoEncoder

Barlow Twins

SImMCLR
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Method

FixMatch

CoMatch

AE

Pretrain+
Fine-tune

Epochs

300
400
200
100

300

Top-1 Accuracy
5% Label

29%
50.8%
18%
24%

21%

Top-1 Accuracy
7.5% Label

N/A
51%
N/A
26%

N/A



Predicted label

Predicted Labels Distri

Plot 1.1 Confusion Matrix of Train Plot 1.2 Confusion Matrix of Val
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Visualization of Network

what did our model learn?
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Performance Analysis

what did our model not learn?

Type 1: Under-Classifi
Challenging characters (to
e Viewpoint variation
e Scale variation
e Intra-class variation

lassified

eneral):

eral features: rectangle

, could contain any object
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