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Abstract

Semi-supervised learning incorporates both la-
beled and unlabeled data points in the training
process and aims to use leverage the unlabeled
data to learn features that would support modeling
process when using the training data for specific
tasks. The community has gained popularity as
the amount of data required and cost of obtain-
ing human labeled data increased over the years.
This paper explains the modeling and thought pro-
cess our team had when tackling the given task,
and achieved 50% accuracy on the test set with
CoMatch.

1. Introduction

Since the huge success of semi/self supervised learning
in NLP, the machine learning community began trying to
transfer the success into other fields such as computer vi-
sion and obtained encouraging results in several problem
setups(Bachman et al., 2019)(He et al., 2020).

The task given is similar to those in the industry: train a
model for a specific task (in our case classification) with vast
amount of unlabeled data and a small percentage of labeled
data (5%). Although several well established models has
achieved impressive results on benchmark datasets such as
CIFAR-10, STL-10 and ImageNet with 1%, 10% labels, the
results are hard to reproduce when applied to a new dataset.
The mentioned datasets are well massaged for machine
learning tasks: the image are cropped/scaled to enhance the
object of interest and reduce as much undesired noise as
it can. In our task, however, the image qualities are not as
good: some image are near impossible for human eyes to
understand due to the low contrast between background and
object and/or the ambiguous object of interest.

In addition, among the models that preformed well in bench-
mark settings, most of them required either large batch size,
large memory storage, hundreds of hours of training time,
or all of them. With the given limited computation power
and resource, our team had to leverage the characteristics of
different models to optimize the training process.

2. Related Work

2.1. Contrastive Learning

Contrastive learning framework is arguably the most pop-
ular architecture in the self-supervised learning commu-
nity(Chen et al., 2020)(Chen & He, 2020)(Zbontar et al.,
2021). The core idea is to encourage the model to attract
similar samples and push apart different ones. For a given
image the simplest way to define similar and different sam-
ples is through augmenting the same image and sample
other images from the batch.

In practice, this approach faces two problems:

* If the model leverages the divergence of data within
one batch, then the model’s performance is hugely
influenced by the batch size.

e If the model instead keeps a dynamic memory bank
of samples to contrast new samples against, then
the model’s performance is hugely influenced by the
amount and quality information stored.

Both approaches requires a large amount of computation
power to achieve satisfying results, which may not be feasi-
ble for practitioners.

2.2. Clustering Learning

Clustering learning methods alternates between learning
features and cluster assignments of input data(Caron et al.,
2020). Unlike contrastive learning, clustering learning meth-
ods do not require positive and negative samples; such role
is replaced with the centers for different clusters. However,
clustering learning methods still require either large batches
or memory bank to maintain the validity of clustering pro-
cess.

2.3. Redundancy Reduction

Redundancy reduction method will make the representa-
tion vectors of distorted versions of an image to be similar,
while minimizing the redundancy between the components
of these vectors.

Barlow Twins use its objective function to naturally avoid
collapsed solutions by measuring the cross-correlation ma-
trix between the outputs of two identical networks fed with
distorted versions of a sample, and making it as close to the
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identity matrix as possible. Unlike most current contrastive
methods, Barlow Twins does not require large batches nor
asymmetry between the network twins such as a predictor
network, gradient stopping, or a moving average on the
weight update(Zbontar et al., 2021).

2.4. Pseudo Labeling

Unlike the two methods described above, pseudo labeling
aims to increase the consistency of the generated pseudo
label for unlabeled dataset(Sohn et al., 2020)(Berthelot et al.,
2019). Typically, the modeling process includes three parts

* Modeling labeled data
* Modeling strongly augmented unlabeled data
* Modeling weakly augmented unlabeled data

The model aims to reduce the divergence between

¢ Prediction of label data and actual label
* Prediction of strongly augmented unlabeled data and
prediction of weakly augmented unlabeled data

The architecture can be thought of as a adversarial network:
the unlabeled data loss pushes the model to converge to
the degenerate solution, and the labeled data loss pulls the
model back and tries to learn the features of the input distri-
bution.

3. Methodology and Results
3.1. Framework

In this section, we introduce the architecture we used in
this competition (Li et al., 2020). Different from most ex-
isting semi-supervised learning methods, CoMatch jointly
learns the encoder f(-), the classification head A(-), and the
projection head ¢(-) and jointly optimizes three losses: a
supervised classification loss on labeled data £, which is
defined as the cross-entropy between the truth labels and
predictions, an unsupervised classification loss on unlabeled
data £, which is defined as the cross-entropy between
the pseudo-labels ¢ and the predictions, and a graph-based
contrastive loss on unlabeled data £

The overall training objective is:
L= Lo+ Ngs L5 + Ao LT

where A\ ;s and A, are the weight of unsupervised losses.

In CoMatch the high-dimensional feature of each sampleis
transformed to class probability p and its normalized low-
dimensional embedding z. It contains four main steps:

* Given a batch B of unlabeled images {(z, yx)}2_,,
CoMatch first perform memory-smoothed pseudo-
labeling on weak augmentations Aug,,(zy) to pro-
duce pseudo-labels. The model’s class predictions are

smoothed by neighboring samples in the embedding
space. Specifically, given prediction and embedding of
data in the memory bank, {ps, 2i }», and current sam-
ple prediction and embedding (po, 2o ), the smoothed
pseudo label is defined as minimizer of:

K

J(a0) =1 =) axllgo — pells + o llgs — poll3
k=1

where « is the similarity score between the current
sample and points in the memory bank

_exp(z0- 2k/t)
ap = 74
> k=1 €xp (20 - 21 /1)

* The pseudo-labels graph W4, which defines the simi-
larity of samples in the label space, are used as targets
to train the classifier, using strongly-augmented images
as inputs. Note the graph is computed within a batch.
Formally we have

1 ifb=j
Wh=¢ a-q ifb#jandg-q>T
0 otherwise

* CoMatch construct a embedding-label graph W?#,
which measures the similarity of strongly-augmented
samples Aug,(U) in the embedding space. The
embedding-label graph contains self-loops as self-
supervision. Similar to W9, this graph is computed
within a batch. Formally,

ifb=j
ifb#j

where z; is the embedding of another strongly aug-
mented version of the data.

* The paper also proposes one can store a momentum
queue with size K of the prediction and embedding of
previous data points and compute the graphs between
current batch and the queue. Therefore W and W~
instead of having dimension of B x B, where B is the
batch size, it would have a dimension of B x K.

» The pseudo-label graph is used as the target to train an
embedding graph with contrastive learning, such that
images with similar pseudo-labels are encouraged to
have similar embeddings.

WE = exp (Zb ' Zl/)/t)
I exp (2 - 25 /t)

An illustration of CoMatch is shown in Fig 1. In order to
build a meaningful pseudo-label graph, the unlabeled batch
of samples should contain a sufficient number of samples
from each class. It is less likely to satisfied for our dataset
which contains 800 classes, since a large unlabeled batch
would exceed the memory capacity under limited resources
(1 GPU). To improve the performance of CoMatch on large-
scale datasets, an EMA model whose parameters 0 are the
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Figure 1. Framework of CoMatch

moving-average of the original model’s parameters 6 : 6
mb + (1 — m)6, where m is the momentum parameter
controlling the model to evolve smoothly.

Additionally, when the unlabeled data contains CoMatch
shows its advantage. The smoothness constraint gives these
samples low-confidence pseudo-labels. Therefore, they are
less connected to in-distribution samples, and will be pushed
further away from in-distribution samples by £

4. Experiment and Results

First, we conduct experiments for different models on 5%
labeled dataset which contains 25,600 labeled images of size
96 x 96 from 800 classes and 512,000 unlabeled images.
Then, we submitted labeling request for extra 12,800 images
based on Barlow Twins, which is our best model before the
second ledearboard. Lastly, CoMatch and Barlow Twins
were selected to be continuously trained based on extra
dataset. And CoMatch finally got best performance.

4.1. CoMatch

Implementation details For our dataset, we use a ResNet-
50 model as the encoder. We train the model using SGD
with a momentum of 0.9 and a weight decay of 0.0001. The
learning rate is 0.1, which follows a cosine decay sched-
ule for 400 epochs. Different from the original paper, we
use different set of hyper-parameters due to a larger per-
centage of labeled images in our dataset, shown in Table
1. Augmentations CoMatch uses one weak augmentation

Dataset B u Aas «@ K t T T Actr

5% labels 055 025 5
75%labels 0+ 410009 30000 0.1 55, o5 3

Table 1. Hyperparameters for CoMatch in two datasets

Aug,,, which is the standard horizontal flip, and two strong
augmentations Augs and Aug,, which are random color
jittering and grayscale conversion.

Extra Labeling Request We used the uncertainty sampling
method to choose the image set that would best improve our
model performance. Specifically, given a trained classifica-
tion model and unlabeled dataset, the entropy confidence
was computed for the prediction of each unlabeled image.
And 12,800 images with the highest entropy, which our
model is more uncertain of, are selected. Together with ex-
tra labels, we can conduct our experiments n 7.5 % labeled
dataset. Because we haven’t gotten outstanding CoMatch
results at the labeling requesting time, Barlow Twins was
used instead to select extra labeling images, leading only
a tiny performance improvement for CoMatch with extra
labels. Table 2 shows that the accuracy of Barlow Twins
increased by 2% with extra labels, while the accuracy of
CoMatch just increased 0.2%.

Results We train CoMatch for only 400 epochs to demon-
strate its efficiency in learning for both 5% labeled dataset
and 7.5% labeled dataset. The training progresses on both
two dataset are shown in Fig2. Tabel 2 shows the the results
of different models we have tried. CoMatch obtains the
highest accuracy of 50.8% on 5% labels, and 51% on 7.5%
labels

Model Epochs Acc. Acc. Ext.
SimCLR 300 21% N/A
Contrastive SimSiam 200 23% N/A
BarlowTwins 100 24% 26%
Auto-Encoder AE 200 18% N/A
Pseudo Label FixMatch 300 29% N/A
CoMatch 400 50.8% 51%

Table 2. Models Accuracy based on original labels and extra labels
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Figure 2. Training progresses on 5% labels and 7.5% labels

4.2. Comparative Models

SimCLR(Chen et al., 2020): SimCLR has demonstrated
outstanding performance in large data settings such as Ima-
geNet. We were only able to train SimCLR with batch size
512 which limited the model performance and converged at
a validation accuracy of 21%.

SimSiam(Chen & He, 2020): SimSiam shares a similar
structure with the incorporation f another prediction net-
work. It suffers from the same limitation as SimCLR, and
our best SimSiam model reached a validation accuracy of
23%.

Auto-Encoder: Although our Auto-Encoder was able to
reconstruct the original image very well, the features the
model learned was not useful for prediction. After fine-
tuning the encoder network on labeled data, the model
reached a highest validation accuracy of 18%.
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Figure 3. Validation vs Training: Distribution of Image Counts
group by Predicted Labels

Barlow Twins(Zbontar et al., 2021): Barlow Twins does

not require large batch sizes, which makes it to be very
practical in our simple GPU sets. Due to time and GPU
limits, the model was just trained for 100 epochs. Our
experiments showed that, with accuracy of 24%, Barlow
Twins outperformed other contrastive models. It has lots of
potentials.

FixMatch(Sohn et al., 2020): Belonging to the same family
of models, FixMatch has a simple architecture: it uses the
prediction of weak augmented version as the label for its
strong augmented counterpart. This model has a lot of
potential, however we couldn’t spend too much resource
on tuning the training and hyper parameters. The model
achieved 29% on the validation set.

5. Discussion and Visualization
5.1. Predicted Labels Distribution

Figure 3 shows most of 800 classes were predicted to contain
about 32 images, which implies the predicted labels of the
training set is very balanced. However, for the validation
set, the predicted labels are not very balanced. There are
some under-classified labels at the bottom-left, and some
over-classified labels at the upper-right. Further, Figure 3
also shows that if a class was under-classified in the training
set, it is likely to be also under-classified in the validation
set, vice versa.

5.2. Visualization of Network

Given the butterfly image, Fig 4 visualizes the some inter-
mediate layers of CoMatch encoder. From those layers, the
model captured some features to differentiate the butterfly
from other classes. In the beginning layers, the model cap-
tured features like the shape of wings, the texture of wings
and background flowers. With the deeper of layers, the
features it detected become more specific. It can detect not
only the wings, but also left wing, right wing, fore wing and
hind wing. All those useful features will help the final layer
to classify this image correctly.

5.3. Error Analysis

Based on the distribution analysis of Fig 3, we will dig into
those under-classified labels as well as over-classified ones
to analyze the reasons.

Under-Classified Classes. The top half of Fig 5 shows
sample images of two under-classified classes. The shield
and hand sanitizer both have challenging characteristics, like
intra-class variation, scale variation and viewpoint variation.
Those characteristics will make the features of one image
be very specific for this image rather than the whole class,
which increases the difficulty to correctly classify those
images.
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Figure 5. Examples of Under-Classified and Over-Classified
Classes

Over-Classified Classes. The bottom half of Fig 5 shows
sample images of two over-classified classes. The shape of
computers is just like a rectangle, and the color and texture is
also very simple. The features of computers are so general,
which could be also included in other classes. Therefore,
images of other classes could be incorrectly classified as
computers. The covers of comic books are very flexible,
they can be any object. The model could learn many various
features from this class. And images from other classes with
the same features could be incorrectly classified as comic
book covers.

6. Conclusion

Through this project, we learnt a lot and left some thoughts
and experiments for future explorations. Firstly, it is impor-
tant to find the right model architecture suitable for the tar-
get problem and related constraints. Even some contrastive
models, like SimCLR, got state-of-the-art performance on
ImageNet, they can hardly achieve high accuracy on our
smaller dataset with limited computation resources. For our
problem, Pseudo Labeling methods and Barlow Twins are

better choices. Secondly, hyper-parameters, like learning
rate, batch size, epochs, are crucial for model performance.
It is worthwhile to put more time searching for good hyper-
parameters. Given more time and resources, we will con-
duct more experiments on Barlow Twins to achieve a higher
accuracy and try to combine it with the CoMatch model.
Thirdly, extra labeling requests could be a smart investment
with proper selection methods. If our labeling request was
based on CoMatch, the improvement would be much more
significant. Given a more flexible timeline, we might try
more creative selection methods based on CoMatch and get
higher accuracy.
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